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Types of vibrations

Aeolian vibration

Galloping (vortex-induced vibration)

source: http://bitly.ws/vSlu
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Analytical modelling

Dorogi, D. and Kollar, L.



Modelling approaches

1. 1DoF VIV of rigid cylinder (planar problem) 2. 2DoF VIV of rigid cylinder (planar problem)
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Modeling transverse flow-induced vibrations

my + cy + ky = F,(t)

—>  E) =Fy{)—mgy —> F, —» drag (component due to stall)

F,

Normalized form:
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van der Pol equation:
g+ e(qg°—1)qg+q=Ay Solved numerically using the FDM
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Validation

Empirical parameters (A, ¢) have Model is tuned to the upper branch
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Modelling FIV of flexible cylinder
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Gao et al. [Ocean Eng 171 (2019), 157]
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Modelling flexible cylinder with initial curveture
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Initial conditions

A >
X
<
Yv
Limiting case (static equillibrium):
Analytical solution:
Ely"Y —Tyy" =0
AXy; A
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Boundary conditions at points A, B, and C PcY Hi

Srinil et al. [Nonlinear Dyn 48 (2007), 231]
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Single-span cable

Double-span
cable

Comparlson agalnst analytlcal result
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The agreement between
numerical and analytical
solutions is very good
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| aboratory measurements

Utkarsh, S.P., Dorogi, D. and Kollar, L.



Shaker tests (exp. setup)

y(x = Xg) = Asin 2nft

?? forces at the first suspension point: F,, F,, and F,

|

' - - make comparison against
evaluate data using advanced data processing techniques s dKe comparison agains

analytical results
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Forces
(A =5mm, f=20 Hz)

operation




Aeolian vibration

Galloping




Next steps

Al. Develop a model for single-span cable
(the cable is forced to vibrate at a single point)

i i

A2. Develop a model for double-span cable
(the cable is forced to vibrate at a single point)

| i

A4. Aerodynamic model for flexible cables < M3. Wind-tunnel measurements for flexible
cables

A3. Simulate flow-induced vibration of single
and double-span cables

M1. Force measurement for single-span cable

M?2. Force measurement for double-span cable




Measurements in wind tunnel

M4. Thermal effects on VIV of a single circular cylinder
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— wind tunnel measurements

— combined effects of free stream velocity U, and stream
temperature T, on fluid forces and cylinder response

?? design the cylinder support

?? oscillation amp. and freq.. post-processing data from
accelerometer

7?7 force measurements: load cells

?? time-resolved velocity measurements in the wake
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Other activities

1. Extend the collaboration with Prof Efstathios Konstantinidis to cable dynamics field

2. Develop a prediction approach for streamwise vortex-induced vibration (invited paper to the special
Issue of Journal of Fluids and Structures)

3. Work on two journal papers in the field of vortex-induced vibrations of a circular cylinder placed into
oscillatory flow
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