

Theoretical and experimental analyses of cables undergoing flow-induced vibrations

by

DR DÁNIEL DOROGI

research fellow

Savaria Institute of Technology

Faculty of Informatics

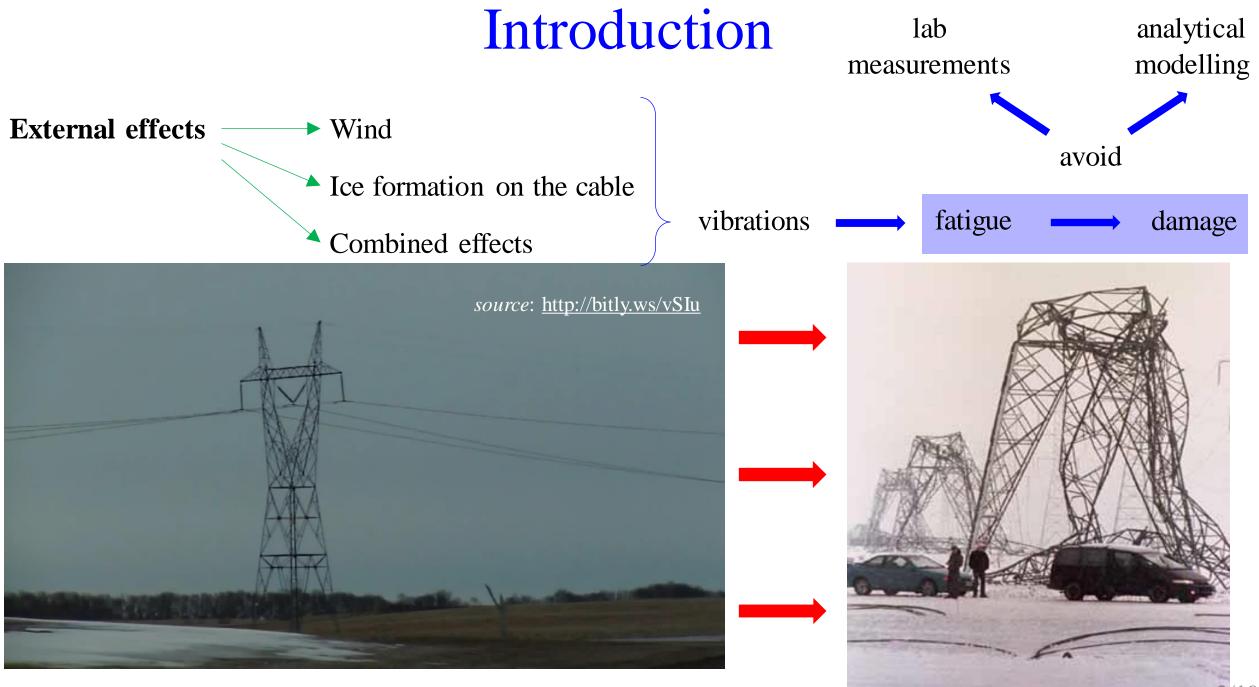
Eötvös Loránd University

Project no. TKP2021-NVA-29 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

NEMZETI KUTATÁSI, FEJLESZTÉSI ÉS INNOVÁCIÓS HIVATAL

AZ NKFI ALAPBÓL MEGVALÓSULÓ PROJEKT

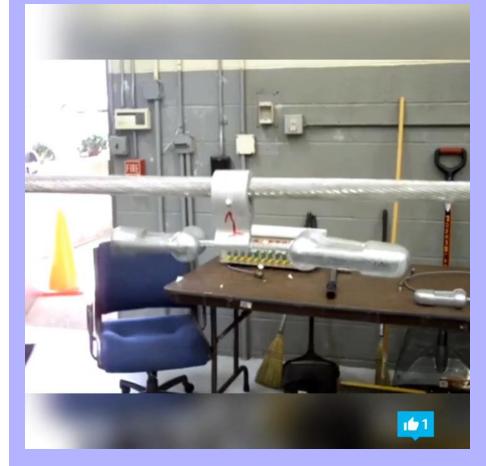
November 4, 2022



Types of vibrations

Galloping source: http://bitly.ws/vSIu

Aeolian vibration (vortex-induced vibration)



very high amplitude and low frequency

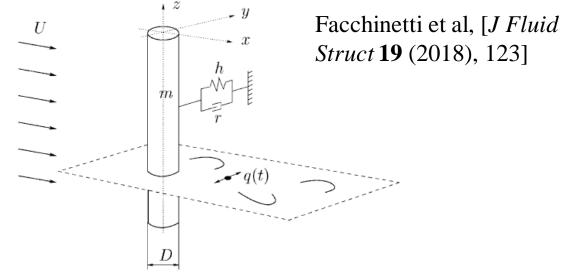
relatively **low amplitude** and **high frequency**

Analytical modelling

Dorogi, D. and Kollár, L.

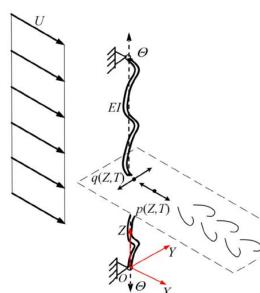
Modelling approaches

1. 1DoF VIV of rigid cylinder (planar problem)

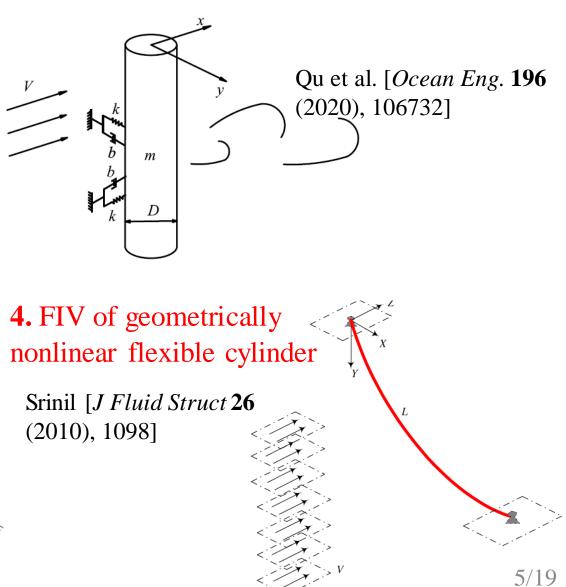


3. FIV of verticle flexible cylinder (3D problem)

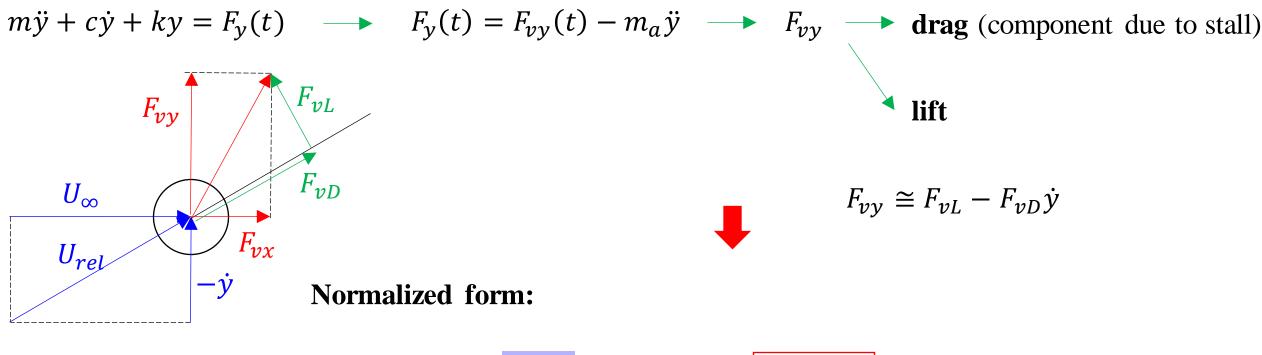
Gao et al. [*Mar Struct* **80** (2021), 103078]



2. 2DoF VIV of rigid cylinder (planar problem)



Modeling transverse flow-induced vibrations

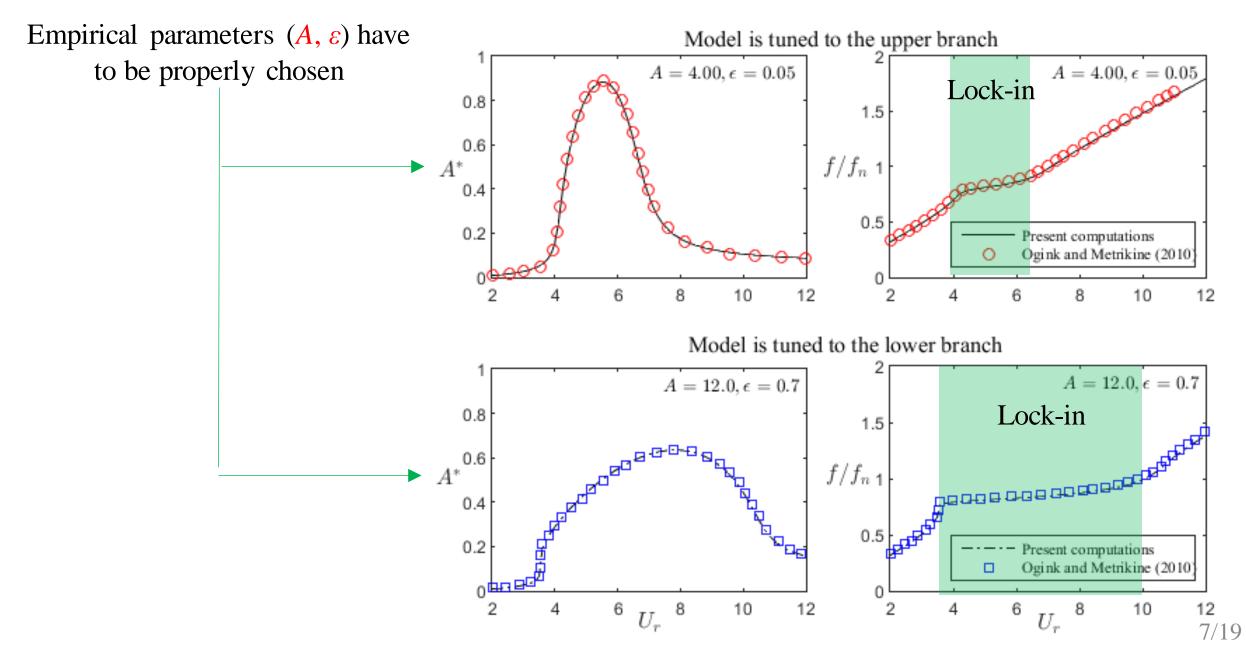


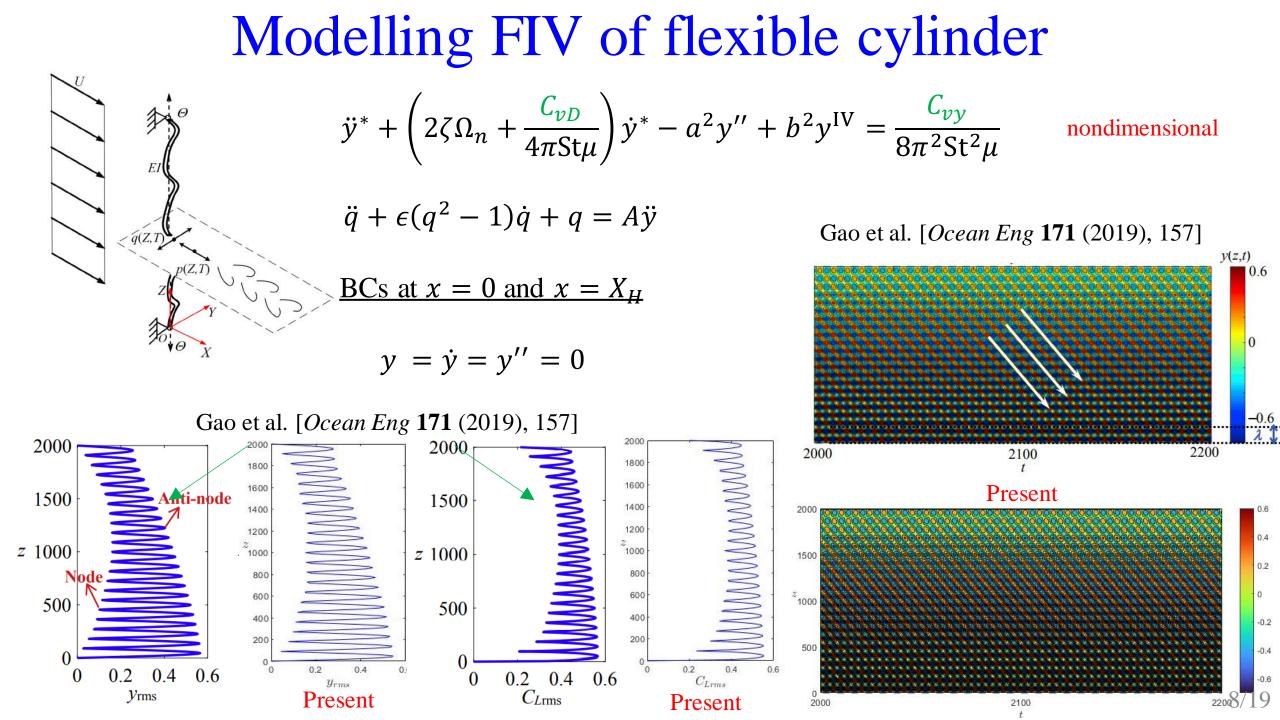
$$\ddot{y}^* + \left(2\zeta\Omega_n + \frac{C_{\nu D}}{4\pi \mathrm{St}\mu}\right)\dot{y}^* + \Omega_n^2 y^* = \frac{C_{\nu y}}{8\pi^2 \mathrm{St}^2 \mu} \qquad \Longrightarrow \qquad C_{\nu L} = \frac{q}{2}C_{L0}$$

van der Pol equation:

 $\ddot{q} + \epsilon (q^2 - 1)\dot{q} + q = A\ddot{y}$ Solved numerically using the FDM

Validation





Modelling flexible cylinder with initial curveture

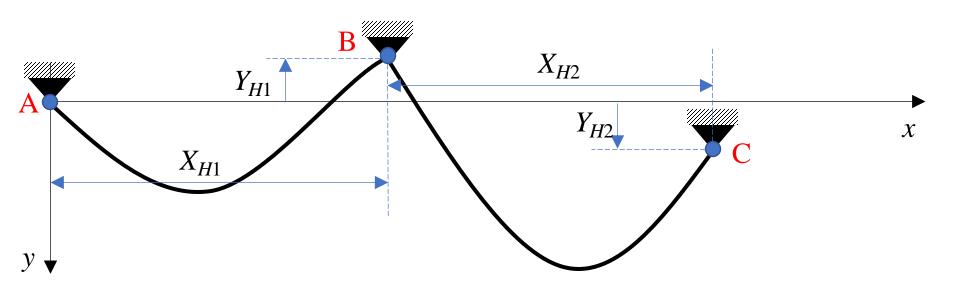
$$m\frac{\partial^{2}u}{\partial t^{2}} + c\frac{\partial u}{\partial t} = \frac{\partial}{\partial s}\left\{T\left(\frac{\partial x}{\partial s} + \frac{\partial u}{\partial s}\right) + EA\left[\frac{\partial x}{\partial s}\frac{\partial u}{\partial s} + \frac{\partial y}{\partial s}\frac{\partial v}{\partial s} + \frac{1}{2}\left[\left(\frac{\partial u}{\partial s}\right)^{2} + \left(\frac{\partial v}{\partial s}\right)^{2}\right]\right]\left(\frac{\partial x}{\partial s} + \frac{\partial u}{\partial s}\right) - EI\frac{\partial}{\partial s}\left(\frac{\partial^{2}x}{\partial s^{2}} + \frac{\partial^{2}u}{\partial s^{2}}\right)\right\} + F_{x}$$

$$m\frac{\partial^{2}v}{\partial t^{2}} + c\frac{\partial v}{\partial t} = \frac{\partial}{\partial s}\left\{T\left(\frac{\partial y}{\partial s} + \frac{\partial v}{\partial s}\right) + EA\left[\frac{\partial x}{\partial s}\frac{\partial u}{\partial s} + \frac{\partial y}{\partial s}\frac{\partial v}{\partial s} + \frac{1}{2}\left[\left(\frac{\partial u}{\partial s}\right)^{2} + \left(\frac{\partial v}{\partial s}\right)^{2}\right]\right]\left(\frac{\partial y}{\partial s} + \frac{\partial v}{\partial s}\right) - EI\frac{\partial}{\partial s}\left(\frac{\partial^{2}y}{\partial s^{2}} + \frac{\partial^{2}v}{\partial s^{2}}\right)\right\} + F_{y} + \rho_{c}gA$$

$$m\ddot{u} + c\dot{u} - \frac{1}{k} \left\{ \frac{T}{k} (1 + v') + \frac{EA}{k^3} (u' + y'v') + \frac{EA}{k^3} \left[u'^2 + y'u'v' + \frac{1}{2} (u'^2 + v'^2) \right] + \frac{EA}{2k^3} (u'^3 + u'v'^2) \right\}' + \frac{EI}{k^3} (1 + u^{\text{III}})' = F_x$$

$$m\ddot{v} + c\dot{v} - \frac{1}{k} \left\{ \frac{T}{k} (y' + v') + \frac{EA}{k^3} (u'y' + y'^2v') + \frac{EA}{k^3} \left[u'v' + y'v'^2 + \frac{y^2}{2} (u'^2 + v'^2) \right] + \frac{EA}{2k^3} (u'^2v' + v'^3) \right\}' \\ + \frac{EI}{k} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' = F_y + \rho_c g_{y/19} + \frac{P_{y/19}}{2k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{EI}{k} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' = F_y + \frac{P_c g_{y/19}}{9/19} + \frac{P_{y/19}}{2k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{EI}{k} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{2k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}}) \right]' \\ + \frac{P_{y/19}}{k^3} \left[\frac{1}{k^3} (y^{\text{III}} + v^{\text{III}})$$

Initial conditions



Limiting case (static equillibrium):

 $EIy^{\rm IV} - T_Hy^{\prime\prime} = 0$

Boundary conditions at points A, B, and C

 $y = y^{\prime\prime} = 0$

Analytical solution:

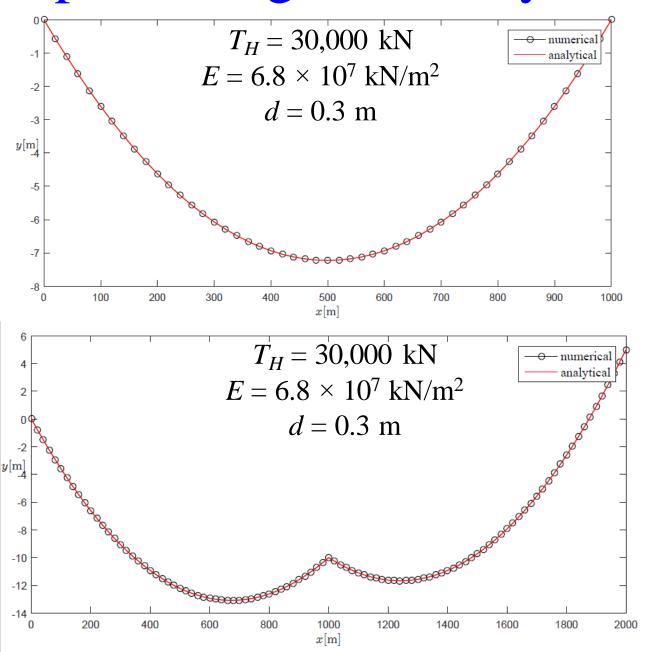
$$y_{an}(x) = \frac{T_H}{\rho_c g A} \left\{ \cosh \frac{\rho_c g A X_{Hi}}{2T_{Hi}} - \cosh \left[\frac{\rho_c g A}{T_{Hi}} \left(\frac{X_{Hi}}{2} - x \right) \right] \right\}$$

Srinil et al. [Nonlinear Dyn 48 (2007), 231]

Comparison against analytical result

Single-span cable

Double-span cable

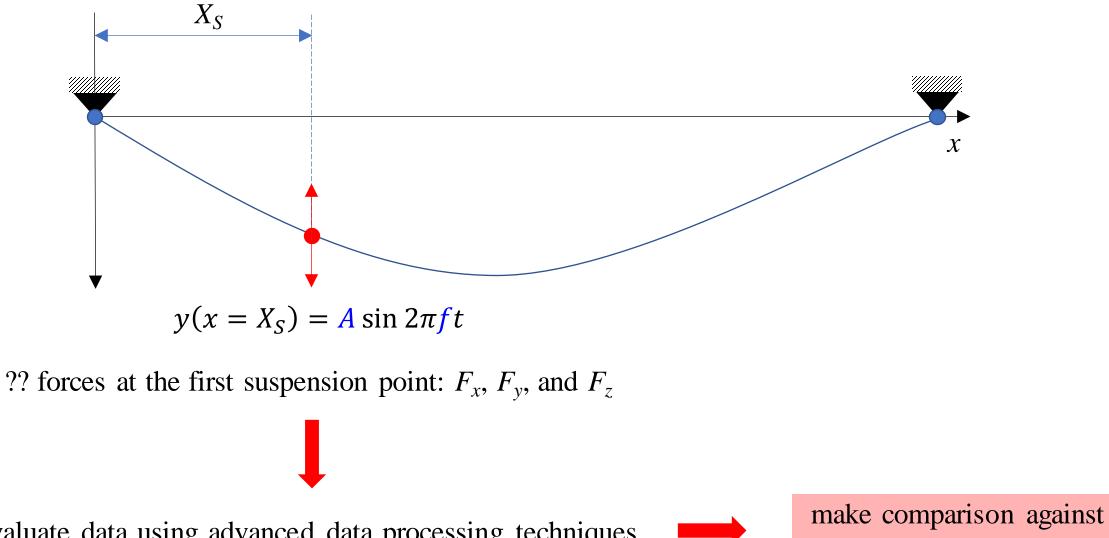


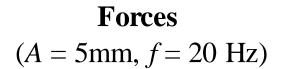
The agreement between numerical and analytical solutions is very good

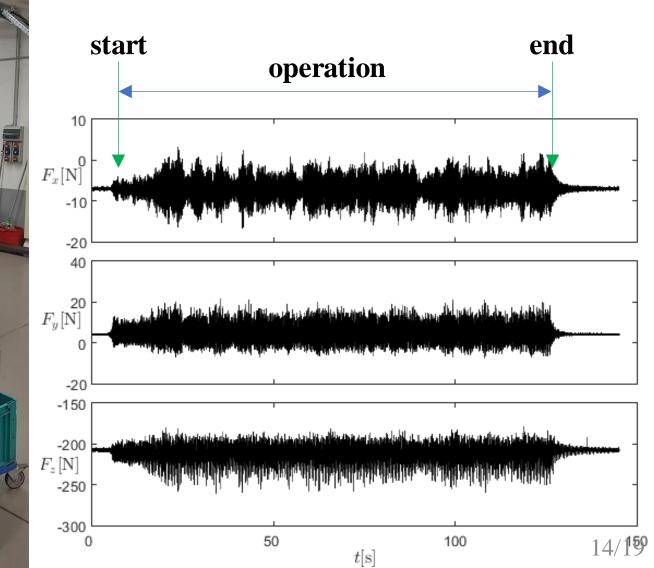
Laboratory measurements

Utkarsh, S.P., Dorogi, D. and Kollár, L.

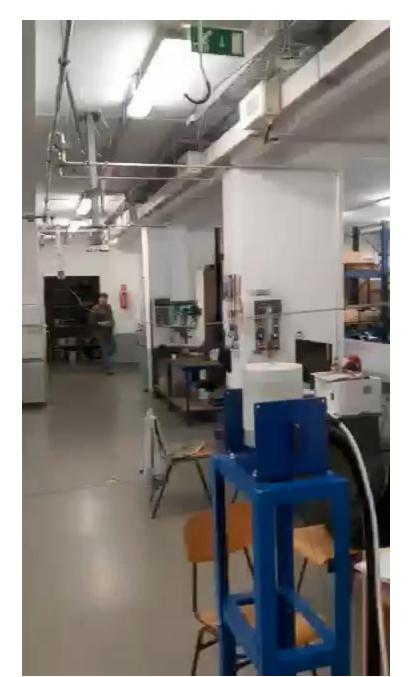
Shaker tests (exp. setup)



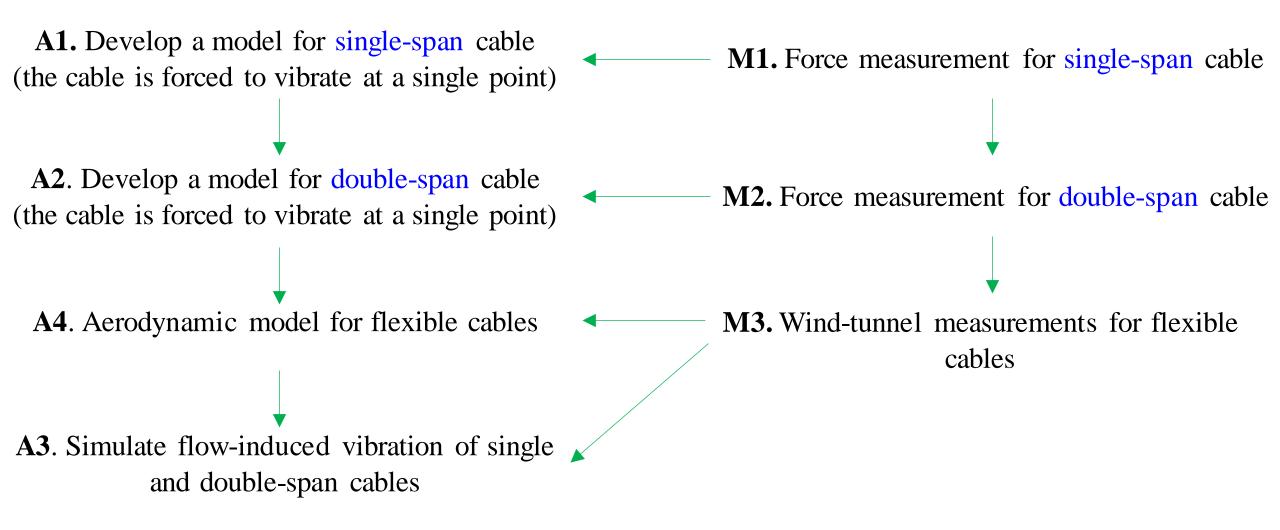




Aeolian vibration

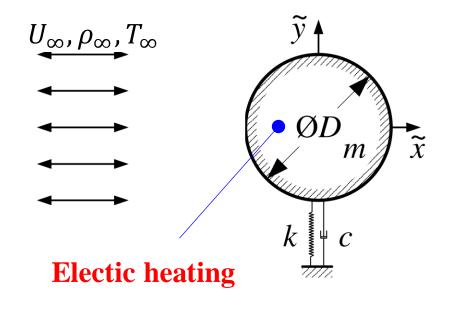


Next steps



Measurements in wind tunnel

M4. Thermal effects on VIV of a single circular cylinder



- wind tunnel measurements

– combined effects of free stream velocity U_{∞} and stream temperature T_{∞} on fluid forces and cylinder response

?? design the cylinder support

?? oscillation amp. and freq.: post-processing data from accelerometer

?? force measurements: load cells

?? time-resolved velocity measurements in the wake

Other activities

1. Extend the collaboration with Prof Efstathios Konstantinidis to cable dynamics field

2. Develop a prediction approach for streamwise vortex-induced vibration (invited paper to the special issue of *Journal of Fluids and Structures*)

3. Work on two journal papers in the field of *vortex-induced vibrations of a circular cylinder placed into oscillatory flow*



Thank you for your kind attention

contact information

DR DÁNIEL DOROGI

e-mail: dorogi@inf.elte.hu